

UNIVERSITÄT GRAZ UNIVERSITY OF GRAZ Institute of Molecular Biosciences

Glyco-DIBMA

SMALP Web Meeting

28.05.2021

Bartholomäus Danielczak, Marie Rasche, Julia Lenz, Eugenio Pérez Patallo, Sophie Weyrauch, Florian Mahler, Michael Agbadaola, Annette Meister, Jonathan Oyebamiji Babalola, Carolyn Vargas, Cenek Kolar, Sandro Keller

Our goal: a new polymer that...

- extracts membrane proteins and lipids with high efficiency
- forms small nanodiscs having a narrow size distribution
- is amenable to downstream analysis and manipulation
- can be safely produced in large amounts (>500 g)
- has no IP issues and is affordable (<25 €/g)

Two-step synthesis & ATR-FTIR

Solubilisation of DMPC by DLS & SEC

- solubilisation: Glyco-DIBMA as efficient as DIBMA
- nanodiscs: narrow size distribution of Glyco-DIBMALPs

- solubilisation: Glyco-DIBMA as efficient as DIBMA
- phase diagram: three-stage model

Solubilisation of POPC by DLS

- solubilisation: Glyco-DIBMA much more efficient than DIBMA
- buffer: optimum at alkaline pH, medium ionic strength

Nanodiscs in negative-stain EM

Bilayer integrity by DSC

- thermotropic phase transition: preserved in Glyco-DIBMALPs
- transition temperature: similar for Glyco-DIBMA and SMA(2:1)

Lipid exchange by stopped-flow FRET

Cuevas Arenas ... Keller Sci. Rep. 2017, 7, 45875

Lipid exchange by stopped-flow FRET

- mechanism: predominantly collisional exchange of lipids
- kinetics: faster with increasing hydrophobicity of polymer

Extraction of *E. coli* **membrane proteome**¹¹

Affinity & SEC purification of KvAP

Lee ... MacKinnon Proc. Natl. Acad. Sci. USA 2005, 102, 441

Affinity & SEC purification of KvAP

high purity and size homogeneity after two-step purification

Microfluidic diffusional sizing (MDS)

- in situ labelling: Atto 488 conjugated to native Cys, then SEC
- hydrodynamic size of KvAP-containing nanodiscs: 11 nm

https://www.fluidic.com

Random thoughts & emerging principles ¹⁵

- bacterial cells: DDM > Glyco-DIBMA = SMA(2:1) > DIBMA
- mammalian cells: Glyco-DIBMA = SMA(2:1) > DIBMA = DDM
- insect cells: strange
- lipid compatibility: anionic, unsaturated lipids & cholesterol
- polymer concentration: 0.1–3% (w/v)
- ionic strength: ideally 100–300 mM NaCl
- pH: ideally 8 or higher

Glyco-DIBMA: a new polymer that...

- extracts membrane proteins and lipids with high efficiency
- forms small nanodiscs having a narrow size distribution
- is amenable to downstream analysis and manipulation
- can be safely produced in large amounts (>500 g)
- has no IP issues and is affordable (<25 €/g)
- sources: bioRxiv 437849v1 & www.glycon-biochem.eu

Carl Zeiss Stiftung

 thanks to: Harald Kelm, Lisa Hamsch, Christiane Müller, Ann-Cathrin Schlapp, Frederik Sommer, Kai Zwara

UNIVERSITÄT GRAZ UNIVERSITY OF GRAZ Institute of Molecular Biosciences

Glyco-DIBMA

SMALP Web Meeting

28.05.2021

Bartholomäus Danielczak, Marie Rasche, Julia Lenz, Eugenio Pérez Patallo, Sophie Weyrauch, Florian Mahler, Michael Agbadaola, Annette Meister, Jonathan Oyebamiji Babalola, Carolyn Vargas, Cenek Kolar, Sandro Keller