Insights into the Formation and Future Applications of PSI-SMALP

Nathan Brady
SMALP Conference 2020
March 20, 2020
Thylakoid Membrane Lipids

<table>
<thead>
<tr>
<th>Lipid Name</th>
<th>Preferred Morphology</th>
<th>Net Charge</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>51% Monogalactosyldiacylglycerol (MGDG)</td>
<td>H_{II} (cubic)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>21% Phosphatidylglycerol (PG)</td>
<td>Lamellar</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>14% Digalactosyldiacylglycerol (DGDG)</td>
<td>Lamellar</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>14% Sulfoquinovosyldiacylglycerol (SL)</td>
<td>H_{II} (cubic)</td>
<td>-1</td>
<td></td>
</tr>
</tbody>
</table>

Lipo-protein complex is ~30% larger in SMALP compared to DDM

77K chlorophyll florescence red shifted in PSI-SMALP compared to PSI-DDM

Characterization of a Photosystem I SMALP

FIGURE 3

DDM SMALP

Nathan G. Brady et al. October 2019. RSC Advances.
Charge separation occurs 1,000 fold faster in ~45% of PSI-SMALPs compared to PSI-DDM.

~45 % of PSI-SMALP particles show an ultrafast charge separation event that is disrupted during detergent isolation.

Light to electricity via Applied Photosynthesis

Light Energy Applied Photosynthetic (LEAPh) System

Potential Applications

- Solar energy conversion
- Optical sensors
- Laser guided systems
- Light intensity detectors
- Photon counting devices
What is the mechanism driving SMALP formation?
SMA 1440: A unique SMA for a peculiar membrane

Collapsed SMA free in solution exhibits prolate ellipsoidal geometry by SAXS

Butoxyethanol functionalization increases hydrophobicity and surface activity of SMA 1440

Neutron and X-ray reflectometry allow us to observe the initial insertion event in detail.
Elastic modulus of galactolipid rich monolayers shows transitions at higher pressure compared to phospholipid monolayers.
XRR shows galactolipid-rich membranes start thinner and become thicker after addition of SMA.
NR suggests deeper insertion of butoxyethanol into acyl region for galactolipid-rich monolayers

Thank you!

PI
Dr. Barry Bruce

Collaborators
Dr. Meng Li
Dr. Khoa Nguyen
Dr. Kristen Holbrook
Jon Nguyen
Dr. Dmitry Cherepanov
Dr. Ivan Shelaev
Dr. Victor Nadtochenko
Dr. Mahir Mamedov
Dr. Brian Long
Cameron Workman
Dr. Francisco Barerra
Dr. Paul Frymier
Dr. Kane Jennings
Dr. Sushil Satija

Colleagues
Jyotirmoy Mondal
Alexandra Teodor
Madeline Davis
Dr. Olena Korotych
Katarina Micin
Shinduri Vijayakumar

ORNL Collaborators
Dr. Hugh O’Neill
Dr. Shuo Qian
Dr. Minh Phan
Dr. John Ankner
Dr. Jim Browning

BNL Collaborators
Dr. James Byrnes
Dr. Vivian Stojanoff

THE UNIVERSITY OF TENNESSEE
KNOXVILLE

BIOCHEMISTRY & CELLULAR
AND MOLECULAR BIOLOGY

TENNESSEE PLANT
RESEARCH CENTER

NSF

BROOKHAVEN
NATIONAL LABORATORY

OAK RIDGE
National Laboratory